Researcher biography

A/Prof Brett Ferguson's research interest are in molecular genetics, genomics, genetic transformation and genome editing, such as CRISPR, to unravel the molecular mechanisms driving plant development. His primary focus is on legume crops, using biotechnology and bioinformatic approaches to identify key genes and signals controlling traits of interest. This includes the agriculturally- and environmentally-important symbiosis between legume plants and beneficial rhizobia bacteria that fix critical nitrogen for their host plant. In addition, A/Prof Ferguson works with the fascinating legume tree, Pongamia pinatta, which has tremendous potential as a feedstock for the sustainable production of biodiesel and aviation fuel.

A/Prof Brett Ferguson leads the Integrative Legume Research Group (ILRG) in the School of Agriculture and Food Sciences (SAFS) at the University of Queensland (UQ). He is an Affiliate of the Centre for Crop Science in the Queensland Alliance for Agriculture and Food Innovation (QAAFI), and an Affiliate of the ARC Centre of Excellence for Innovations in Peptide and Protein Science (CIPPS). A/Prof Ferguson is also a Chief Investigator in the large, multi-national Hy-Gain for Smallholders Project primarily funded by the Bill & Melinda Gates Foundation.

The work of A/Prof Ferguson has contributed to the discovery of many new genes and signals, such as novel microRNAs and peptide hormones, that have critical roles in controlling plant development. His research group identified the complete family of CLE peptide encoding genes of several legume species using an array of molecular and bioinformatic approaches. Additional discoveries of genes involved in legume nodule formation, nitrogen signalling and the regulation of root development, are also having an impact in the research field. Many of these factors could be useful in supporting translational studies and breeding programs that look to improve crop performance. His work also established a requirement for brassinosteroid hormones in legume nodulation and demonstrated a central role for gibberellins in nodule development. Moreover, he contributed to some of the initial work reporting a role of strigolatones in shoot branching, and demonstrated that plants can transport quantities of auxin far in excess of their endogenous levels.

A/Prof Ferguson has also contributed to the developed of new tools and techniques, such as petiole feeding, precision feeding in growth pouches, stem girdling, pHairyRed for promoter-reporter fusions, new hairy-root transformation techniques, novel integrative vectors to enhance transformation efficiency, synthetic biology approaches to generate mature double stranded miRNA, etc.